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Optimization of power consumption is one of the main design challenges in today’s low-
power high-speed analog integrated circuits. In this paper, two popular techniques to
stabilize two-stage operational amplifiers, namely, Miller and cascode compensations are
compared from power efficiency point of view. To accomplish this, cascode-compensated
topologies are basically analyzed to derive the required equations for the comparison. In
the analysis, a new method to take into account the effect of transfer function zeros is
proposed. By assuming that the zeros’ magnitudes are fairly nondominant, the method
increases the accuracy of the analyses. The relationships show that for the same specifica-
tions, cascode compensation is more power-efficient than Miller compensation, especially
for heavy capacitive loads. This has been confirmed by SPICE simulations.
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1. Introduction

Power consumption is one of the main challenging issues in modern electronic equip-
ments. Its reduction looks like to be more challenging when designing low-voltage
analog integrated circuits in deep sub-micron technologies, especially operational
amplifiers (opamps). At the first glance, reduction of supply voltages and transistor
dimensions seems to be effective in lowering opamp power consumption. However,
as there will be less room for the signal, to keep the same signal-to-noise ratio the
power should be increased. Moreover, as lower available power supplies prevent the
designers to stack adequate transistors upon each other, it becomes quite difficult
to satisfy both the required DC gain and voltage swing with single-stage ampli-
fiers. As a result, multistage opamps with more power-hungry branches might be
inevitable.1

Two-stage opamps are used widely in industry to achieve high DC gain and
high output voltage swing together. To avoid instability in the negative feedback
loop, the opamp frequency response should be appropriately compensated. Several
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compensation techniques have been proposed to stabilize a two-stage amplifier.2,3

For a particular value of power consumption, each technique makes a trade-off
between stability and bandwidth. How much the trade-off is determines the benefit
of one scheme over another. To compare the two popular compensation techniques
for two-stage opamps, namely, Miller and cascode compensations from this point
of view, a new analysis has been performed in this paper.

When Miller compensation is applied to a two-stage opamp, a compensation
capacitor is placed between the input and output of second stage. The capacitor has
a pole-splitting action which moves one pole to lower frequencies and the other one
to higher frequencies. This increases the closed-loop stability, but lowers the opamp
bandwidth. In general, the main drawbacks of Miller compensation are low power
efficiency, low power supply rejection ratio (PSRR), and large value of required
compensation capacitor. The feedforward current flow through the compensation
capacitor toward the output is another issue in Miller-compensated amplifiers.4

The current introduces a right-half-plane (RHP) zero to the transfer function which
reduces the closed-loop stability. The reason why this feedforward current degrades
the stability is that it tries to pass the signal to the opamp output by bypassing the
second stage. This nullifies the 180◦ phase shift by the second stage and reverses the
output polarity. Equivalently, it forces the negative feedback to become positive.
Hence, the output sign inversion occurs at lower frequencies with higher absolute
loop-gain value and lower phase margin. A nulling resistor is applied in series with
the compensation capacitor to avoid bypassing the second stage with this current.5

The resistor increases the feedforward path impedance and equivalently moves the
RHP zero to higher frequencies. However, in practice, the value of the resistor is
affected by temperature and other variations in device fabrication, which results
in more variations in opamp’s stability. Due to this, another method to reduce
the effect of the RHP zero, called as cascode compensation is proposed. Instead
of a nulling resistor, it employs a current buffer in series with the compensation
capacitor. The current buffer tries to decrease the feedforward current by conducting
it directly to the second-stage input. Correspondingly, it tries to push the RHP zero
to higher frequencies.4 Compared to the previous method, it offers some advantages.
First, as the parameters of current buffers are less sensitive to the variations, the
structure robustness increases. Second, for a particular bandwidth, it results in
higher PSRR and lower power consumption. Nevertheless, these advantages are at
the cost of higher complexity during the design and optimization of these topologies.
Perhaps, the main reason for such complexity is the increase in the order of the
system due to the practical implementation of current buffers. Correspondingly, the
analysis of such systems becomes more complicated.

The aim of the analysis performed in this paper is to compare Miller com-
pensation with cascode compensation from the power efficiency point of view. To
do this, the ambiguous relationships between bandwidth and stability of a two-
stage cascode-compensated opamp are obtained. It has been hard to observe the
effect of zeros in the analysis of such structures, and thus most previous closed-loop
based studies neglect their effect.3,4,6–8 Assuming that zeros are located at high
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frequencies, the analysis in this work does not ignore them. This is done based on
the zeros Taylor expansion, which will be explained later.

The analysis in this paper is based on the meaningful and user-friendly open-
loop parameters instead of their closed-loop equivalents.6,7 Open-loop parameters
are formerly proved to be useful in analyzing three-stage amplifiers.9,10

The rest of the paper is organized as follows: In Sec. 2, the details of the analy-
sis for two-stage cascode-compensated opamps are presented. The same well-known
analysis for two-stage Miller-compensated opamps is brought in Sec. 3. Section 4
compares the two structures from power point of view. Simulation results in 0.25µm
CMOS technology are presented in Sec. 5, and finally the conclusion is given
in Sec. 6.

2. Two-Stage Cascode-Compensated Opamps

Figure 1 shows a two-stage opamp composed of a folded-cascode amplifier as the
first stage and a common-source amplifier as its second stage. It employs cascode
compensation scheme to avoid closed-loop instability. This topology has been chosen
typically and the analyses could be applied to any other two-stage fully-differential
or single-ended opamps. Figure 2 shows the small-signal equivalent, where CA, CB ,
and CL and RoA, RoB, and RL are the total capacitances and resistances seen at
nodes A, B and VO, respectively. After resolving the small-signal set of equations,
making reasonable simplifications, and performing some routine algebra, the small-
signal transfer function is obtained as follows4:

AV (s) ∼= gmigmLRoBRL(1 − s2/(gmBgmL/CBCC))

(1 + gmLRLRoBCCs)(1 + (CB(CL + CC)/gmLCC)s + (CLCB/gmBgmL)s2)
.

(1)

The transfer function has one real dominant pole and two nondominant poles.
Nondominant poles are complex when their damping factor is less than unity
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Fig. 1. A two-stage fully-differential opamp with cascode compensation.



4 H. Aminzadeh & R. Lotfi

mi ing V oAR AC
1

mBg mB Ag V

BA

CC

LR
LCmL Bg V

OV

BCoBR

inV

Fig. 2. Small-signal differential mode half-circuit.

(ξ < 1). The transfer function also has two zeros: one is located at RHP and
the other one is located at the left-half-plane (LHP).

Previously performed analyses in literature3,4,6–8 were based upon the assump-
tion that the effect of zeros is negligible in the output response. As it is seen
in Eq. (1), the magnitude of zeros can be even comparable with the magnitude
of nondominant poles. Thus, their effect should also be considered appropriately.
Equation (1) can be rewritten in the following symbolic form:

AV (s) =
ADC(1 − s2/z2)

(1 + s/ω0)(1 + s(2ξ/ωn) + s2/ω2
n)

∼= 1 − s2/z2

(s/GBWCascode)(1 + s(2ξ/ωn) + s2/ω2
n)

, (2)

where ADC, z1,2 = ± |z| and ω0 are the opamp open-loop DC gain, the mag-
nitude of zeros, and the magnitude of dominant pole, respectively. GBW Cascode

represents the opamp gain-bandwidth frequency, where |AV (jω)| becomes equal to
unity. These parameters are related to small-signal parameters according to the
following equations:

ADC = gmigmLRoBRL , (3)

z1,2 = ±
√

CBCC

gmBgmL
, (4)

ω0 =
1

gmLRLRoBCC
, (5)

GBWCascode = ADCω0 =
gmi

CC
. (6)

The two parameters ξ and ωn are the nondominant poles damping factor and
natural frequency, respectively. Comparing Eq. (1) with Eq. (2), it can be found
that

ξ =
1
2

√
gmBCB

gmLCL
·

(
1 +

CL

CC

)
, ωn =

√
gmBgmL

CLCB
. (7)
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It is relatively hard to observe the effect of zeros in the transfer function as
shown in Eq. (2). An elegant and efficient way to make the analysis more accurate
is to properly model the effect of zeros in the generic second-order polynomial of the
denominator. Hence, the new values of damping factor (ξ) and natural frequency
(ωn) called as effective damping factor (ξ′) and effective natural frequency (ω′

n) can
be defined such that the effects of zeros are taken into account:

1 − s2/z2

1 + s(2ξ/ωn) + s2/ω2
n

=
1

1 + s(2ξ′/ω′
n) + s2/ω′2

n

. (8)

The equation in the form of Eq. (8) does not yield straightforward relations between
effective damping factor and effective natural frequency with small-signal parame-
ters. However, Taylor expansion of zeros can be used to rewrite Eq. (8) as:

1 + s

(
2ξ′

ω′
n

)
+

s2

ω′2
n

=
1 + s(2ξ/ωn) + s2/ω2

n

1 − s2/z2

=
(

1 + s

(
2ξ

ωn

)
+

s2

ω2
n

)
·
(

1 +
s2

z2
+ · · ·

)
. (9)

By ignoring higher than second-order terms that are very small when the zeros are
located at high frequencies, Eq. (9) is simplified into

1 + s

(
2ξ′

ω′
n

)
+

s2

ω′2
n

≈ 1 + s

(
2ξ

ωn

)
+ s2

(
1
ω2

n

+
1
z2

)
. (10)

Approximation (10) may not hold true in case the zeros are located at low fre-
quencies, in which higher order terms are important. However, this approxima-
tion is the key point to increase the accuracy of the derived equations. Equating
the corresponding coefficients in Eq. (10), the relationship between the new
effective damping factor and natural frequency with their old counterparts is
obtained:

1
ω′2

n

=
1
ω2

n

+
1
z2

,

2ξ′

ω′
n

=
2ξ

ωn
.

(11)

Figure 3 depicts the concept of how the effect of zeros can be embedded into the
damping factor and natural frequency. It shows that the effect of zeros, together
with nondominant pole magnitudes can be combined to define the effective poles
with new magnitudes. The new pole locations can be found by defining an effective
damping factor and an effective natural frequency for them.
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Fig. 3. Modeling the approximate effect of zeros on the location of nondominant poles. (Two
new parameters called as effective damping factor and effective natural frequency are defined.)

Substituting Eq. (7) into Eq. (11) and rearranging, it can be shown that

ξ′ =
1
2

√
gmBCB(CC + CL)

gmLC2
C

, ω′
n =

√
gmBgmL

CB(CC + CL)
. (12)

Equation (12) shows that ξ′ and ω′
n can directly be controlled by changing the

values of CC , gmB, and gmL. There is however less control on the value of CB,
the parasitic capacitance of the first stage output, because it is a function of the
transistors’ parasitic capacitances which are related to their dimensions and biasing
points.

ξ′ and ω′
n have a major effect on the settling response of the amplifier. These

two parameters should be carefully determined. Their product result (which will
be used later) is as follows:

ξ′ω′
n =

1
2

gmB

CC
. (13)

In simulations, the relationship between ξ and ξ′ is helpful to indirectly determine
ξ′ from ξ. Comparing Eq. (7) with Eq. (12) it can be shown that

ξ′

ξ
=

√
CL

CC + CL
. (14)

Equation (14) proves the inaccuracy of foregoing methodologies. It shows that the
difference between ξ (which was conventionally used when ignoring the effect of
zeros) and ξ′ (which takes into account the effect of zeros) could be remarkable. It
also shows that the conventional approach in the literature to ignore the effect of
zeros may result in an unacceptable deviation between analytical and measurement
results.
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According to the proposed model, the transfer function will be as follows:

AV (s) ∼= ADC

(1 + s/ω0)(1 + s(2ξ′/ω′
n) + s2/ω′2

n)
. (15)

The phase margin is defined as the relative distance between the phase of
the amplifier at the loop-gain transient frequency (where |β · AV (jω)| becomes
equal to unity) and − 180. If the loop-gain transient frequency is approximated as
β · GBWCascode (similar to a first-order system), this parameter can be approxi-
mated as follows:

φM = 180 − tan−1

(
β · GBWCascode

ω0

)
− tan−1

(
2ξ′(β · GBWCascode/ω′

n)
1 − (β · GBWCascode/ω′

n)2

)
,

(16)

where β is the feedback factor of the closed-loop amplifier. Since, after compensa-
tion, the first dominant pole is located at very low frequencies, the relative distance
between its location and the loop-gain transient frequency becomes relatively large.
Hence, the ratio β · GBWCascode/ω0 tends to infinity and we can write

φM = 90 − tan−1

(
2ξ′0(β · GBWCascode/ω′

n0)
1 − (β · GBWCascode/ω′

n0)2

)
. (17)

According to Eq. (17), it can be shown that

tan(φM ) =
(

1 − (β · GBWCascode/ω′
n0)

2

2ξ′0(β · GBWCascode/ω′
n0)

)
. (18)

Substituting ω′
n and ξ′ω′

n from Eqs. (12) and (13) into Eq. (18), the two following
expressions for the GBWCascode are obtained:

GBWCascode =
1
β

√
gmBgmL

CB(CC + CL)
1

ξ′ tan(φM ) +
√

1 + ξ′2 tan2(φM )
, (19)

GBWCascode =
1
β

gmB

2ξ′CC(ξ′ tan(φM ) +
√

1 + ξ′2 tan2(φM ))
. (20)

Given gmB, CC , and β, the two equations (19) and (20) predict that the lower
effective damping factor would result in a higher GBWCascode. However, for the
same value of phase margin, the relative distance between this parameter and ω′

n

decreases. This could finally cause an induced peak in the interested frequency
region (from low frequencies up to β · GBWCascode) and significantly degrade the
closed-loop stability and gain margin (GM ). Perhaps, keeping ξ′ tan(ϕM ) greater
than a threshold around unity is essential for the closed-loop stability and a lower
ξ′ should be compensated by a higher phase margin.
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3. Two-Stage Miller-Compensated Opamps

Figure 4 shows a two-stage Miller-compensated operational amplifier and its small-
signal equivalent. Similar notations as in the previous section are used to denote
the parameters. As it is highlighted in the introduction, a nulling resistor (RC)
is applied in series with the compensation capacitor to nullify the effect of RHP
zero and to push it to infinity. After compensation, assuming that the RHP zero is
moved to high frequencies, the transfer function will be1,2,5:

AV (s) =
gmigmLRoBRL

(1 + gmLRLRoBCCs)(1 + (CL/gmL)s)
=

ADC

(1 + s/ω0)(1 + s/ω1)

∼= 1
(s/GBWMiller)(1 + s/ω1)

, (21)

where GBW Miller has the same definition as that of GBW Cascode. According to
Eq. (21), the relationship between GBW Miller and phase margin becomes:

ϕM
∼= 90 − tan−1

(
β · GBWMiller

gmL/CL

)
. (22)
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Fig. 4. A two-stage Miller-compensated opamp and its small-signal equivalent.
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Combining Eqs. (21) and (22), we can obtain

GBWMiller =
gmi

CC

∼= 1
β

gmL

CL tan(ϕM )
. (23)

4. Comparison Between Power Consumptions

The performed analysis in Secs. 2 and 3 makes it possible to compare cascode com-
pensation and Miller compensation with nulling resistor based on their consuming
power.

As it is clear, for a constant overdrive voltage, the transconductance of MOS
transistors is linearly proportional to their bias currents (when biased in strong
inversion region).

It can be shown that for the same stability margins, the total power of an
amplifier is linearly proportional to its gain-bandwidth (GBW ). In Fig. 3, assuming
that the current of folded branch (IF) is proportional to the input current (i.e.,
IF = αIi), the power consumption value (P ) would be

P = 2 · V DD · (Ii + αIi + IL) = V DD · ((1 + α)gmi · Vovi + gmL · VovL) , (24)

where the notation Vov is used to denote the overdrive voltage of each transistor.
Substituting Eq. (23) into Eq. (24), we can obtain

P = V DD · ((1 + α)CC · Vovi + β · CL · tan(ϕM ) · VovL) · GBWMiller . (25)

As can be seen, for a particular load capacitor, feedback factor and stability margins
(unchanged values of CC and ϕM ) power consumption is linearly proportional to the
gain-bandwidth (GBWMiller). The same consequence can be achieved for cascode
compensation using Eqs. (6), (19), and (20), and for constant ξ′, CC , and ϕM .

Based on these facts, comparison between power consumption of the two topolo-
gies is equivalent to comparing them from the GBW viewpoint. The approach in
three-stage opamps is to compare the GBW s of two topologies when their power
and stability margins are identical.10–12 The same figure of merit (FOM) (the ratio
between GBW s for the same amount of stability margins and power) will be applied
here.

By defining m as the ratio of compensation capacitor to the load capacitor
in cascode compensation (which is between 0 and 1 in typical designs) and using
Eqs. (19) and (23), the highlighted ratio (R) is expressed as:

m =
CC(Cascode)

CL
, (26)

GBWCascode

GBWMiller
= R , (27)

R =
1√

1 + m

tan(ϕM )

ξ′ tan(ϕM ) +
√

1 + ξ′2 tan2(ϕM )

√
gmB

gmL

√
CL

CB
. (28)
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In case, R being greater than unity, cascode compensation achieves higher band-
width than Miller compensation for the same amount of power. However, R can be
made larger, which is the case when the amplifier is loaded by a large capacitance,
as the ratio is proportional to

√
CL. For unchanged stability margins (ξ′ and ϕM ),

maximizing gmB, the transconductance of MB, with respect to gmL, the transcon-
ductance of ML and minimizing the second-stage input node parasitic capacitance
(CB) make this approach more efficient.

As it is seen in Eq. (25), in optimized designs, achieving higher GBW s for
fixed stability margins is only possible by increasing the power. Consequently,
Eq. (28) predicts that for a particular gain-bandwidth, cascode compensation
is more power-efficient than Miller compensation, especially for heavy capacitive
loads.

5. Simulation Results

To verify the accuracy of the derived equations and to compare the two struc-
tures, several simulations were performed by 0.25µm BSIM3v3 level 49 mixed-
signal CMOS HSPICE models. For a unity-gain buffer, a small on-chip opamp
was required to drive a 8.5 pF capacitive load. For the available amount of power,
the opamp gain-bandwidth product which has effects on the distortion of the
delivered signal to the load was important. Two opamps with the structures shown
in Figs. 1 and 4 were designed and precisely simulated for this application. To
compare the effectiveness of the two compensation techniques, the opamp core
in both the designs was kept unchanged, and only the compensation scheme was
changed. Table 1 shows the small-signal parameters and device sizes of the designed
opamp.

The first opamp was compensated by the cascode compensation scheme. The
stability margins (ξ′ and ϕM ) were determined at first. As it has been demonstrated
in third-order systems, to achieve the maximum closed-loop unity-feedback flat
band the damping factor (or effective damping factor according to our analysis)
and the phase margin should be adopted equal to 0.7 and 60◦, respectively.6,7 The
compensation capacitor and devices transconductances were appropriately changed
according to Eqs. (6), (19), and (20) to set these two parameters. With ξ′ = 0.7

Table 1. Device sizes and circuit parameters.

Device (W/L) Transconductance (gm)mA/V Parameter Value

Mi 90/0.25 3.81 RoA 0.3 kΩ
MT 80/0.4 10.59 RoB 8 kΩ
ML 100/0.25 12.6 RL 1 kΩ
MB 180/0.25 14.9 CA 0.81 pF
MU 200/0.25 8.48 CB 0.79 pF
MF 250/0.5 8.07 CL 8.5 pF
MO 200/0.5 7.53
MTail 100/0.25 5.19
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Table 2. Simulated and calculated results.

Parameter
Expected

value
Cascode-compensated

topology
Expected

value
Miller-compensated

topology

Supply voltage (V DD) 1.5V
Gain-bandwidth

product (GBW ) 300 MHz 300MHz 183MHz 167 MHz
Phase margin (PM ) 60◦ 60◦ 60◦ 60◦
Effective damping

factor (ξ′) 0.707 0.612 — —
Open-loop DC gain

(ADC) 60 dB 62 dB 60 dB 62 dB
Power consumption 11.5 mW

and ϕM = 60◦, an approximate 300MHz gain-bandwidth with 2 pF compensation
capacitor was achieved.

The second opamp was compensated by Miller compensation scheme. To obtain
an identical stability (ϕM = 60◦), the compensation capacitor was connected to
node B (instead of A) and was increased to 3.3 pF. A 90Ω nulling resistor was also
added in series with the compensation capacitor to push the RHP zero to infinity.

A comparison between simulation and calculation results has been made in
Table 2. The results confirm an acceptable agreement between the simulations
and Eq. (23). The loop-gain frequency responses for both the cases are shown
in Fig. 5.

Using the simulation-extracted small-signal parameters shown in Table 1, the
ratio of R defined by Eq. (28) is obtained as follows:

GBWCascode

GBWMiller
=

0.6√
1 + 0.3

√
14.9 mA/V
12.6 mA/V

√
8.5 pF
0.79 pF

∼= 1.88 .

This prediction is confirmed by simulation, because Fig. 4 and Table 2 show that
the ratio is:

GBWCascode

GBWMiller
=

300 MHz
167 MHz

= 1.79 .

6. Conclusion

In this paper, two popular techniques to stabilize the two-stage operational ampli-
fiers, namely Miller and cascode compensations are compared from power effi-
ciency viewpoint. Cascode compensation is basically analyzed to derive the required
equations. A new method to take into account the effect of transfer function
zeros by the aid of their Taylor expansion is applied. The results show that cas-
code compensation is more power-efficient than Miller compensation, especially for
heavy capacitive loads. This is a very important result to determine the type of
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compensation of the amplifier according to the load, design complexity, and power
consumption.
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